写 EMID 卡号相关说明

数据格式

1. 1 数据格式

数据格式(起始位,数据位,校验位,停止位)可以根据通讯的需要由软件设置,下面是设备支持的数据格式:

下面是默认设置:

波特率	数据位	起始位	停止位	校验位
9600	8	1	1	None

1. 2 数据包格式

数据包格式,命令包是由主机发送到读写器,返回包是由读写器返回主机。

命令包格式 (主机到读写器):

STX CARD ID DATA LENGTH	CMD	DATA [0N]	BCC	ETX
-----------------------------	-----	-----------	-----	-----

(BCC) = CARD ID \oplus DATALENGTH \oplus CMD \oplus DATA [0] \oplus ... \oplus DATA [n], where \oplus is the "EOR".

返回包格式 (读写器到主机)

STX	CARD ID	DATA LENGTH	STATUS	DATA[0N]	BCC	ETX

(BCC) = CARD ID \oplus DATA LENGTH \oplus STATUS \oplus DATA [0] \oplus ... \oplus DATA [n], where \oplus is the "EOR".

数据包中字节描述:

字段	长度	描述	备注
STX	1	0xAA – '起始字节' – 标准控制字节. 表示一个数据包的开始	
CARD ID	1	写 EMID 卡号代码 01	
DATALENGTH	1	数据包中数据字节的长度.包括 CMD/STATUS 和 DATA field,但不包括 BCC. LENGTH= 字节数 (CMD/STATUS + DATA[0 N])	
CMD	1	命令字:由一个命令字节组成.	可以参照命令表 该字节只在发送包中使用
STATUS	1	返回状态字节: 由读写器返回主机的状态	该字节只在返回包中使用
DATA [0-N]	0–255	这是一个长度与命令字有关的数据流。也有部分命令 不需要附加数据.	
BCC	1	8bits 的校验字节.它包括除 STX, ETX 外所有字节的异或校验.	
ETX	1	0xBB:'终止字节' – 标准控制字节,表示数据包的结束.	

COMMANDS (命令)

命令表					
命令字	名称				描述
系统命令 (0x80~0x8F)					
0x84	Write_UserInfo	写 EMID 卡号数据			
0x85	Read_UserInfo	读 EMID 卡号			

具体也可以参考软件透明的输出输入数据

3.1 Write_UserInfo (0x84)

发送数据:

DATA[0]: 对卡进行选择,T5557 卡是 01,EM4305 卡是 02

DATA[1] 锁定卡的内容(即**设置为写保护**): 0X55: 正常,0XAA: 写保护(只对 T5577 卡有效。对 EM4305 卡,这个 数据是 55 或 AA 都没关系,软件 是自动选 55 的)。

注意:如已设置为写保护后,数据不可再改写。

DATA[2-6] 写的卡号数据 000000000H-FFFFFFFFH 一共 5 个字节

正确返回:

STATUS: 0x00 - OK

DATA[0]: 0x80(表示操作成功)

错误返回:

STATUS: 0x01 -FAIL

DATA[0] 参考错误代码表

描述:

比如: 卡为 T5557 卡 (01H) 不锁定(55H),写卡号数据为:00 55 AA 55 AA

发送命令: AA 01 08 84 01 55 00 55 AA 55 AA D9 BB

回执数据: AA 01 02 00 80 83 BB

写卡失败

非接触式读卡模块通讯协议

回执数据: AA 01 02 01 81 83 BB

比如卡为 EM4305(02) 不锁定(55H), 写卡号数据为 11 11 11 11

发送命令: AA 01 08 84 02 55 11 11 11 11 11 CB BB

回执数据: AA 01 02 00 80 83 BB

写卡失败

回执数据: AA 01 02 01 81 83 BB

3.2 Read-ID (0x85)

发送数据:无

正确返回:

STATUS: 0x00 - OK

DATA[1-N]: DATA1-N 是这个卡的具体数据

错误返回:

STATUS: 0x01 - FAIL

DATA[0] 参考错误代码表

描述: 读 125KHZ 的 EMID 卡(EM4001 或兼容卡)

比如:卡号数据: 02 00 B0 97 44

发送命令: AA 01 01 85 85 BB

回执数据: AA 01 06 00 02 00 B0 97 44 66 BB

没有读到卡:

回执数据: AA 01 02 01 83 81 BB

Page 4 of 5 18 DEC 2004

非接触式读卡模块通讯协议

7 错误/状态 代码(STATUS)

一般代码:

0x00:表示命令执行成功

0x01:表示命令操作失败(具体说明参见函数)

0x80:表示参数设置成功

0x81:表示写卡失败

0x82:表示读卡失败

0x83:表示卡不存在

0x84:表示卡和读卡器不匹配(就是要读卡的类型CARDID和读卡器不符合)

0x87:表示未知的错误

0x85:表示输入参数错误,校验错误或者输入命令不存在0x8f:表示 输入的指令代码不存在

Page 5 of 5 18 DEC 2004